COCAINE CARDIOMYOPATHY — A CASE REPORT

Georgiev Antonio,1 Zhivadinovik Julija2

1 University Clinic for Cardiology, Medical Faculty, Skopje, University “Ss. Cyril and Metodius”, R. Macedonia
2 Institute of Anatomy, Medical Faculty, Skopje, University “Ss. Cyril and Metodius”, R. Macedonia

Abstract: Cocaine is the second most common illicit drug used and the most frequent cause of drug related deaths. The use of cocaine is associated with both, acute and chronic complications, that may involve any system, but the most common system affected is cardiovascular one. Cocaine cardiomyopathy may result from the use of cocaine.

This article presents a first case in Republic of Macedonia of 24-year-old male with reversible cocaine-related cardiomyopathy. Clinical presentation, laboratory, X-ray, ultrasound findings and treatment are reviewed.

Key words: cocaine, cocaine cardiomyopathy, diagnosis, treatment.

INTRODUCTION

Cocaine is the second most common illicit drug used and the most frequent cause of drug related deaths. In a retrospective of European study of 479 ACS patients younger than 50 years admitted to a critical care unit from 2001 to 2008, a total of 24 patients (5%) had admitted to recent cocaine abuse or tested positive on urine drug screening (1). In 2005, 2.4 million persons were actively using cocaine. The younger age groups of 18–25 are the most common users and it is estimated that 11% of the population has used it at some point (2). The 2008 National Survey on Drug Use and Health reported that approximately 36.8 million Americans ages 12 years and older (14.7% of Americans at age 12 and up) had tried cocaine at least once (3). Despite its illegal status, use of this illicit drug in Republic of Macedonia is prosecuted by law. Yet there are people who use this drug and have complications from it.

Cocaine acts as a powerful sympathomimetic agent. It blocks the presynaptic reuptake of norepinephrine and dopamine producing high level of these neurotransmitters at the postsynaptic receptors. It also may increase the release of catecholamines from central and peripheral stores. The sympathomimetic actions of cocaine, at cellular level, are mediated by stimulation of the α and β adrenergic receptors. Cocaine also interacts with the muscarinic receptors, and inhibits the reuptake of dopamine and serotonin by nerve endings (1).

Cocaine intoxication usually presents with symptoms of adrenergic excess. Hypertension, occasionally in the range of hypertensive crisis, may be present. Cerebral vascular accidents of either thrombotic or hemorrhagic origin are not uncommon. Acute delirium and mania may be present, particularly if other drugs were used concurrently (2).

The use of cocaine is associated with both acute and chronic complications that may involve any system, but the most common system affected is cardiovascular one (2–6). Cocaine related complications include: cardiac (myocardial ischaemia, coronary artery spasm, myocardial infarction (MI), atherosclerosis, myocarditis, cardiomyopathy, arrhythmia, hypertension, and endocarditis); vascular (aortic dissection and rupture, vasculitis); gastrointestinal (mesenteric ischaemia or infarction, perforation); pulmonary (pulmonary oedema, pulmonary infarction, and haemoptysis); genitourinary and obstetric (renal and testicular infarction, abruptio placentae, spontaneous abortion, prematurity, and growth retardation); neurological (seizures, migraine, cerebral infarction, and intracranial hemorrhage); musculoskeletal and dermatological (rhabdomyolysis, skin ischemia, superficial and deep venous thrombosis, and thrombophlebitis) (2–6).

CASE REPORT

We present a case of a twenty four years old male, with a history of inhaling vaporized cocaine, and marijuana for two years. The main complaints of patient were fatigue, labored respiration, especially at night, dyspnea, anxiety, increased heart rate and loss of appetite during last 2–3 months. The patient was conscious,
anxious, oriented to time, space and persons. Heart sounds were clear with systolic murmur. The ECG showed sinus tachycardia (HR > 100/min) (Figure 1) and about 0.5 mm upsloping ST segment depression in lateral leads. Blood pressure was elevated (150/105 mmHg). Laboratory analysis showed elevation of blood Urea (10.6 mmol/L), Creatinine (154 mmol/L), Na (149 mEq/L), K (4.2 mEq/L) and iron-deficiency anemia with Fe (7.1 mcg/dl). X-ray findings obtained enlarged heart silhouette (Figure 2). Echocardiographic evaluation showed left chamber dilatation with reduced global systolic function and ejection fraction (EF) 38%, designated mitral cusps with posterior cusp prolapsed, thin regurgitated flow and intraatrial septum tissue changes.

Preceding therapy Carvedilol and Acetylsalicylic acid was changed to heart failure — guideline-based heart failure therapy: Carvedilol, nonselective alpha/beta — adrenergic blocker (2 x 6.25 mg per day), Perindopril, ACE inhibitor (4 mg per day), Spironolactone, mineral corticoid receptor antagonist, MRA (25 mg per day), Thiazide diuretic (25 mg per day) and Acetylsalicylic acid (100 mg per day). Therapy for correction of anemic syndrome was recommended. Cocaine cessation was obligated.

Two months later, after cocaine cessation and treatment in specialized hospital, the patient didn’t fill the symptoms from the first examination, but he was at bad physical condition. Laboratory findings were normalized: Urea 7.6 mmol/L; Creatinin 108 mmol/L; Na 149 mEq/L; K 4.2 mEq/L and Fe 16.2 mcg/dl. EKG showed sinus rhythm with HR 65/min. Blood pressure was normal: 120/80 mmHg. Dimensions of left ventricle were in referent values. Left ventricle EF was significantly reduced with EF 49%, mitral cusps were designated with posterior cusp prolapsed and intraatrial septum tissue changes. The patient continued with the same therapy.

DISCUSSION

Cocaine users may have various symptoms referable to the cardiac system. Symptoms can include chest pain with or without myocardial ischemia or aortic dissection, hypertension with or without hypertensive crisis, cerebral ischemia, and hemorrhage. Patients also may present with acute myocardial decompensation with or without pulmonary edema and shock. In this case, shortness of breath and hypoperfusion dominate the clinical picture (1, 6, 7, 8).

Morbidity and mortality information associated with cocaine-related cardiomyopathy is commonly based on case reports (9, 10). Chokshi et al. were among the first authors to describe a reversible cocaine-related cardiomyopathy. The patient in their report, a 35-year-old woman, underwent endomyocardial biopsy that failed to reveal any necrosis, fibrosis, or inflammatory infiltrate (9).

While most cases of cocaine-related cardiomyopathy have proved to be reversible, others have resulted in permanent cardiac dysfunction or death. The symptoms of cocaine-related cardiomyopathy are the same as symptoms for other forms of congestive heart failure. The onset may be very sudden and of short duration. A cocaine-related etiology for cardiomyopathy should be suspected in any patient with a history of cocaine use, particularly binge use; and heart failure, wit-
hout another established etiology for the heart failure, such as coronary artery disease. If the clinical suspicion is high, the diagnosis of cocaine use should be investigated with a urine screen for cocaine and its metabolites. The typical patient with cocaine cardiomyopathy is a young male smoker who presents with signs of adrenergic excess (5, 10). With acute binge use of cocaine, the patient may present with acute congestive heart failure and pulmonary edema. Hypotension, rather than hypertension, may predominate, making the diagnosis and treatment more difficult. Cocaine-related cardiomyopathy presents more acutely than other types of congestive heart failure, and fewer findings of chronic congestive heart failure are present. Otherwise, the physical findings are similar. Diaphoresis, pallor, and acute dyspnea are present. Cardiogenic shock or evidence of cardiac ischemia also may be present.

The laboratory investigation of cardiomyopathy of any etiology generally shows abnormalities of electrolytes, usually anemia and compromised renal function, with elevation of blood urea nitrogen (BUN) and creatinine.

Cocaine usually is evident on a urine toxicology screen, because these cases almost always present immediately after use of the drug. Because individuals who use cocaine are predisposed to the development of endocarditis, consider blood cultures if the setting is at all appropriate.

In cases of cardiomyopathy, the chest radiograph usually shows evidence of cardiomegaly and depressed heart failure. Evidence of septic emboli may be present if endocarditis is present. The radiograph may be normal in many cases.

Echocardiographic evaluation shows chamber dilatation and global dysfunction or regional wall motion abnormalities if myocardial contractile elements. Echocardiographic studies have shown that individuals who abuse cocaine have a higher left ventricular mass index with a higher end-diastolic/ end-systolic wall thickness ratio.

Cardiac catheterization usually shows normal coronary arteries with minimal disease, even in the presence of endocardial fibrosis.

In cases of cardiomyopathy, the ECG is not specific for myocardial infarction. ECG changes of left ventricular hypertrophy and variable ST-T wave changes. Arrhythmias also may be detected, and continuous monitoring may be advised.

In autopsies of 40 patients, 31 of whom died cocaine-related deaths and 9 of whom were homicide victims with detectable blood cocaine levels, Virmani et al. found that 20% of the patients showed evidence of myocarditis on toxic screening tests (11). Tazelaar, in an autopsy study, reported contraction-based myocardial necrosis similar to that observed in pheochromocytoma (12).

In a case report by Robledo-Carmona, histologic findings of the left ventricular myocardium included sparse mononuclear infiltrates associated with degenerative changes, myocyte necrosis, and severe interstitial fibrosis (13).

Management

Associations of cardiologists don’t recommend recommendations for concrete medicamentous treatment of cocaine cardiomyopathy (1). Management of the patients is similar to that of patients with EF ≤ 40% of dilated cardiomyopathy, although beta-blockers should be included in patients with cocaine-associated heart failure and benzodiazepines should be given in this setting to blunt adrenergic excess. If shock is present, inotropic agents and vasopressors are indicated. If evidence of ongoing ischemia is present, aggressive use of agents directed at relieving vasospasm (nitrates and calcium channel blocking drugs) are indicated. Endotracheal intubation may be necessary. If arrhythmias are present, it is felt to be compromising the clinical situation, they should be treated aggressively. The use of beta-blockers as single agents is contraindicated for the purpose of these patients need to know and the use in medical practice cardiac magnetic resonance imaging method that is quite useful for predicts reversibility of cocaine-induced ventricular dysfunction (1, 15, 16).

John McMurray et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012 (17) recommend the following therapy:

An ACE inhibitor in addition to the beta-blocker is used for all patients with an EF ≤ 40% to reduce the risk of heart failure hospitalization and the risk of premature death. A beta-blocker in addition to an ACE inhibitor is used for all patient with an EF ≤ 40% to reduce the risk of heart failure, hospitalization and the risk of premature death. An MRA is recommended for all patients with persistent symptoms and EF < 35%, despite treatment with ACE inhibitor and a beta-blocker to reduce the risk of heart failure hospitalization and the risk of premature death. It is good to mention that analysis of B-type natriuretic peptide (BNP) level can help monitor the presence of congestive heart failure. Also BNP is very helpful to monitor response to treatment.

In most of reported cases of cocaine-related cardiomyopathy, patients have shown significant improvement following the cessation of cocaine use. In some cases, patients have returned to normal cardiac func-
tion, but recurrence is reported if the patient relapses into cocaine use (5).

Efforts to assist the patient with their drug addiction should be a part of every treatment plan. Hospitalization for detoxification may be necessary, particularly if other drugs also are being abused. Outpatient treatment of drug dependence is strongly advised. Abstinence from cocaine use and long time follow up is mandatory.

CONCLUSION

This is the first publication of cocaine-related cardiomyopathy in our country. Physicians usually don’t consider the possibility of cocaine use of their patients. Many cocaine users have little or no idea of the risks associated with its use. So, patients, health care workers and the public should be educated about the dangers and the considerable risks of cocaine use.

Abbreviations

ACE — Angiotensin converting enzyme
BNP — Natriuretic peptide
BUN — Blood urea nitrogen
ECG — Electrocardiography
EF — Ejection fraction
ESC — European Society of Cardiology
HR — Heart rate
MI — Myocardial infarction
MRA — Mineral corticoid receptor antagonist
ST — ECG between the end of the S wave (the J point) and the beginning of the T wave

References

17. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012; 33(14): 1787–847.

Correspondence to / Autor za korespondenciju
Georgiev Antonio
University Clinic for Cardiology
Vodnjanska bb
1000 Skopje, Republic of Macedonia
e-mail: antoniogeorgiev@yahoo.com
tel: 0038970 305114